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A generalized Langevin equation with arbitrary correlated noise and associated frequency-dependent friction
is simulated, which can lead to anomalous diffusion. The algorithm is realized by using the Fourier transform
technique to generate noise and the stochastic Runge-Kutta method to solve the whole equation. Application to
an acoustic phonon model, initial preparation-dependent ballistic diffusion, is shown.
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The generalized Langevin equation �GLE� is an equation
of motion for the non-Markovian stochastic process where
the particle has a memory effect to its velocity. Recently,
GLE has been used to govern the dynamics of a system in a
non-Ohmic environment that presents anomalous diffusion
�1–3�. The noise is defined by its spectral density propor-
tional to ��−1 at low frequencies, where � is the power ex-
ponent. The frequency-dependent friction is deduced from
the correction function of the noise by means of the Kubo
second fluctuation-dissipation theorem �FDT� �4�. This
model yields the mean square displacement of a force-free
particle of the form �x2�t��� t�, a subdiffusion for 0���1, a
normal diffusion for �=1, a superdiffusion for 1���2, and
a ballistic diffusion for �=2. It is known that dynamical be-
haviors of the system depend strongly on the properties of
the correlation function of noise and of the memory friction
kernel. Unfortunately, systematic studies on anomalous
transport in external fields so far have not been presented
yet, because numerical solving the fractional Fokker-Planck
equation �5� and numerical solving the fractional Langevin
equation �6� leads to anomalous diffusions, which is a
difficult task.

Usually, a numerical scheme for GLE simulates a set of
Markovian Langevin equations by introducing variable
transforms �7�, or usually the thermal colored noise appear-
ing in GLE can be simulated directly �8�. Several algorithms
have been proposed in the last few years to generate corre-
lated colored noises �9–11�, most of which obey a linear
Langevin equation driven by a Gaussian white noise. Never-
theless, quite often in stochastic dynamics, such as in the
study of anomalous diffusion, one needs to generate a Gauss-
ian noise with a particular time correlation function, but with
unknown Langevin-like dynamics �12,13�. In this paper, we
propose an effective algorithm to simulate the time-
dependent transport process of an anomalously diffusing par-
ticle. The non-Ohmic and acoustic phonon models are
considered.

The GLE for a classical particle of mass m in the presence
of a potential reads

ẋ = v�t� ,

v̇ = − �
0

t

��t − t��v�t��dt� −
U�„x�t�…

m
+�kBT

m
��t� , �1�

where kB is the Boltzmann constant, T is the temperature of
the environment, ��t� is the friction kernel function and
���t���0��=��t� is related to the noise ��t� through FDT.

If GLE �1� cannot be transferred into a set of Markonian
LEs, we need to use the second-order stochastic Runge-Kutta
method �14� to solve Eq. �1� itself. The key point of the
algorithm is to simulate arbitrary correlated noise with time-
translation invariance. Here we consider a general case that
the noise ��t� cannot be generated by a stochastic differential
equation driven by a Gaussian white noise. García and San-
cho have developed an approach to generate time-correlated
noise in Ref. �12�. In the following we will adopt their
scheme.

In the �-Fourier space, the correlation function of the
noise is written as

����������� = 2�������� + ��� , �2�

where ���� and ���� are the Fourier transforms of ��t� and
��t�, respectively. We discretize time in N=2n intervals of
the mesh size �t. Every one of those intervals will be de-
noted by a Roman index in the real space and by a Greek
index in the Fourier space. So the discrete Fourier version of
Eq. �2� is given by

����	����
�� = ���	�N�t�	+
,0. �3�

Then the noise in the Fourier space is constructed as

���	� = �N�t���	��	, 	 = 1, . . . ,N − 1,

���0� = ���N� , �4�

where �	 are Gaussian random numbers with the zero mean
and correlation

��	�
� = �	,−
. �5�

�	 can be expressed in terms of its real and imaginary parts
�	=a	+ ib	, where a	 and b	 are Gaussian random numbers
with zero mean and variance given by �2�

	�a	
2 � = �b	

2 � = 1
2 , for 	 = 1,2, . . . ,N − 1;

�a	
2 � = 1, �b	

2 � = 0, for 	 = N .
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The discrete inverse Fourier transform of Eq. �4� gives a
string of N numbers, ��t�, which are correlated with the re-
quested time correlation by construction. Then the friction
kernel function and the corresponding correlation function of
the noise are numerically evaluated by

��ti� =

�
j=0

N0

���tj + i�t���tj��

N0 + 1
, �6�

where the numbers of the network N=225 and N0=N /4 are
used in our simulations.

It is known that the non-Ohmic model �1� can describe a
rich variety of frequency-dependent friction mechanisms,
which arises from a spectral density J���=���� / �̃��−1fc,
where fc is a high frequency cut-off function of typical width
�c; �̃ denotes a reference frequency allowing for the friction
constant m�� to have the dimension of a viscosity of any �.
The friction kernel function in the spectral space reads

���� = 2��� �
�̃
��−1

fc� �
�c

� . �7�

When �=1, ���� is equal to a constant at least in the fre-
quency range ���c, which reduces to the Ohmic friction,
i.e., the usual Gaussian white noise case.

The temporal correlation function of the noise has
been obtained by applying the inverse Fourier transform to
Eq. �7�. In fact, this colored noise cannot be produced
by a stochastic differential equation driven by a Gaussian
white noise. Here we use the parameters �̃=1.0, ��=1.0,
�t=0.01, and choose a smooth cutoff function
fc=exp�−� /�c� �3� with �c=4.0. Thus ���� is written as a
discrete form

FIG. 1. The correlation function of non-Ohmic noise for two
power exponents. The solid lines and open circles are theoretical
and numerical results, respectively.

FIG. 2. The mean square displacement of the particle calculated
by numerical simulation �open circles� and theoretical expression
�lines� for various �. The parameters used are the same as Fig. 1.

FIG. 3. The mean temporal energy of the particle in a double-
well potential. The straight line is the stationary analytical result.
The parameters used are �0=1.0, T=0.2, and =0.005.

FIG. 4. �a� The simulating �open circles� and theoretical �solid
lines� results for the correlation function of noise. �b� Comparison
of the mean square displacement calculated by the present algo-
rithm �open circles�, the theoretical data �solid lines�, and Ref. �18�
�dashed line with T0=0�.
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���	� = ��2N�t��� 2�	

N�t�̃
��−1

exp��� , 0 � 	 �
N

2
;

���N−	� ,
N

2
� 	 � N ,�

�8�

where �=2�	 / �N�t�c�. It is noticed that the cut-off of the
noise frequency has no large influence on the result, since the
long-time dynamical behavior of the system is determined by
small � spectrum of the noise.

In Fig. 1, we plot the correlation function of the noise for
various power exponents � by using the present Fourier
transform technique. It is seen that the numerical results are
in good agreement with the theoretical formula. This will
assure the reliability of GLE driven by such thermal colored
noise simulated. Figure 2 shows the mean square displace-
ment of a force-free particle for various �; those are calcu-
lated numerically from GLE �1� and compared with the ana-
lytical formula �3�. The particle starts from the origin of the
coordinate and its initial velocity obeys a Gaussian distribu-
tion with the variance �v2�0��=kBT /m �3�. Herein we indi-
cate by �¯� the average with respect to the initial value of
the state variable.

The present algorithm is not only applicable to a complex
correlated noise with a frequency-dependent spectrum, but
also used to simulate a non-Markovian dynamics which can
be transformed into a Markovian process through introduc-
ing new variables. For comparison, we consider the energy
relaxation for a particle subjected to a thermal Ornstein-
Uhlenbeck noise �OUN� moving in a double-well potential
�7�. The OUN ��t� obeys the following linear Langevin equa-
tion �9,10�:

�̇�t� = −
��t�


+

��t�


, �9�

where ��t� is a zero-mean Gaussian white noise with
���t���t���=�0��t− t�� and  is the correlated time of noise.
The stationary correlation function of the OUN is given by
����t���t����= ��0 /�exp�−t− t� /� �15�. The potential is
taken to be U�x�=x4−2x2 �16,17�. The mean temporal en-
ergy of the particle is determined by �E�t��= 1

2m�v2�t��
+ �U(x�t�)�.

We use the present algorithm and the transforming Mar-
kovian method �7� with 105 trajectories to simulate the relax-
ation of the particle starting from x�0�=0 and v�0�=0 evolv-

ing to the stationary state, the results are shown in Fig. 3.
The parameters are �0=1.0, T=0.2, =0.005, and
�t=0.0005. The theoretical result is �E�t=6��=−0.773 �17�,
the system has arrived at the stationary state at this time. It is
seen that the result calculated by the present algorithm is in
good agreement with that of the direct simulating algorithm
�7� at any time and approaches the stationary analytical data
in a long-time limit.

Recently, Morgado et al. �18� presented a criterion for the
lower part of frequency in the spectral density of noise being
removed in order to produce ballistic diffusion and also per-
formed numerical simulations, where the initial velocity of
the particle was taken to be zero. The spectral density of
noise in the acoustic phonon model reads

�n��� = 	C , for �1 � � � �s;

0, otherwise,

 �10�

where C is a constant. The noise is originated from a coupled
harmonic chain, �s is the Debye phone frequency, and �1 is
a finite frequency. The friction kernel function of the system
is given by

��t� =
2�*

�
� sin��st�

t
−

sin��1t�
t

� , �11�

where �* is the friction coefficient.
However, we think that their result does not include the

initial velocity of the particle and the directly simulating al-
gorithm used by them is not accurate for such a problem.
Here we report the asymptotical expression for the mean
square displacement of a force-free particle as

�x2�t�� = � kBT

m
b + � kBT0

m
−

kBT

m
�b2�t2, �12�

where the factor b= �1+2�* /��1/�1−1/�s��−1 and T0 is the
initial temperature of the particle determined by its initial
velocity T0=m�v2�0�� /kB. In fact, the above expression is
exactly according to the residue theorem �7�, because there
are no other nonzero roots for the equation z+ �̂�z�=0 �where
�̂�z� is the Laplace transform of ��t��, which appears in the
inverse Laplace transform of the response function �19�.

It is unknown for the noise with the correction �11� obey-
ing a linear Langevin equation driven by a Gaussian white
noise, but the only requirement for the algorithm to work is
that the Fourier transform of the temporal correlation func-
tion can be known �12,13�. We discrete ���� as follows

���	� =�
�N�tC ,

N�t�1

2�
+ 1 � 	 �

N�t�s

2�
;

0, 0 � 	 �
N�t�1

2�
+ 1 or

N�t�s

2�
+ 1 � 	 �

N

2
;

���N−	� ,
N

2
� 	 � N .

� �13�
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According to the prescription �6� we generate the discrete
field ����. The requested noise ��t� can be generated by ap-
plying the Fourier transform to ����. First, we check the
suitability of the procedure. The correlation function of noise
is evaluated numerically based on the prescription �13� and
plotted in Fig. 4�a�. In comparison, the result calculated theo-
retically by Eq. �11� is also plotted.

Figure 4�b� shows the mean square displacement of a
force-free particle calculated numerically by our algorithm
and the direct method of Ref. �18�. The parameters used
are �s=0.5, �1= 1

2�s=0.25, �*=0.25, ��=2� /N�t, and
�t=0.01. The particles starts from the origin of the coordi-
nate, whose initial velocity obeys a Gaussian distribution as
W�v0�= �2�m−1kBT0�−1/2 exp�−mv0

2 /2kBT0�. We also plot the
theoretical result �Eq. �12�� in Fig. 4�b� by choosing the ini-
tial temperatures of two kinds. The agreements between our
simulation and the theoretical result are excellent, however,
the error in Ref. �18� is about 40% at t=100. The asymptoti-
cal velocity variance of the particle is deduced as
�v2�t→���=kBT /m+b2�kBT0 /m−kBT /m�. Although the
FDT does not generally hold when b�0 it assumes validity
for a special initial preparation, namely the equilibrium
preparation with a Gaussian of weight kBT /m. The break-

down of the FDT is thus connected with the breakdown of
the ergodicity. Alternatively, this implies that no unique sta-
tionary probability exists for the Gaussian non-Markovian
process if the initial particle velocity is not chosen to be
equilibrium.

In summary, we have proposed a numerical scheme to
solve the generalized Langevin equation with arbitrary cor-
related noise. This algorithm works in the discrete Fourier
space and is not restricted to the dynamics of the noise.
Because of application to the non-Ohmic model with
frequency-dependent friction, we have obtained a better
result for anomalous diffusion. Upon inspection from nu-
merical and analytical calculations of the acoustic
phonon model showing ballistic diffusion, we have found a
prominent result: the mean square displacement and velocity
of the particle are initial preparation dependent. Further,
anomalous transport processes of a particle moving in a
potential can be investigated by means of the present
algorithm.
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